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1. A general block–factorization

form of multilevel preconditioners;

methods

Consider a sparse matrix A.

(matrix)

algebraic

Having a transformation matrix Y = [Y~, Y*] one

can introduce block structure in A:

~ = YTAY =
[

YITAY1 Y1TAY2 1Y2TAY1 Y2TAY2 “

Given ~~ precondtioners to ~~ R YiTAY2,z= 1,2,

respectively,

define the following block factorization precondi-

tioned for i:



B=
[

El o
Y2TAY1 B2 1

[

~ I -B;1Y1TAY2
o 1I“

The actual preconditioned to A isthen defined

as:

YB–lYT .

The actions of B–l are computed with the fol-

lowing algorithm:
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Algorithm 1 [B/ock elimination]

Consider x = ~–ld

Denote

Y1,

YiTd, z= 1,2

Y2

and

A 12 = Y1TAY2,A21 = Y;’AY1.

. Forward e mination.-

~–1 YTd
bY2 d

.

2. “Eliminate first block, and solve with B2,
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. Backward recurrence:

1. Solve:

I.e., compute,

2. Compute the solution x

i.e.,

“x =

.
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One has,

r = d– AB–ld = (1 – AY1~;lYf)

X (1 – AY23;1Y2T) (1– AY1g; lYIT)d=

(1)

This is a “two-level” algorithm of product form.

The trivial choice of Y2 = [1O } fine dofs
I } coarse dofs

corresponds to (approximate) block–factorization

preconditioners.

One can view El as smoother, Y2~ as restriction

and Y2 as interpolation. Then, ~2 = Y2TAY2 is
the coarse–grid matrix.

Y1 specifies the actual space where the smooth-

ing is performed.

When ~2 is constructed from ~2 using the same

algorithm (by recursion) one ends up with multi-

level methods.
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We refer to “algebraic” multilevel methods when
the parameters Yl, Y2 and 61 are algebraically
constructed, i.e., depending on A only.

Typical choices of Y1 are:

[1I } fine dofs●Y1=
O } coarse dofs

– this is HB (hierarchical basis) –like;

● Y1 = I (both coarse and fine dofs)
– this is AMG;

●Y~=(I-7T)
[1

I } fine dofs
O } coarse dofs

– this is the “wavelet’’- modified HB;

here 7T= Y2G~1Y2~G is a an approximate pro-
jection on the coarse–grid, G is a given Gram
matrix, G2 = Y2~GY2–the coars; one, and
-–1G2 E G~?
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2= Selecting parameters based on matrix

topology; graph based algorithms;

In what follows we will concentrate on the con-

struction of Yz - the coarse–to–fine interpolation

matrix, which involves:

the choice of the coarse dofs Dk,

and the interpolation rule PII itself.

In AMG none of the following is explicitly known:

neither the geometry (domain) and the coeffi-

cients of the PDE, nor the elements and type

of basis functions. In conventional AMG one as-

sumes that only the assembled sparse matrix A

isexplicitly given and one has access to its indi-

vidual entries.



2.1.

The

n~)

Main assumptions in AMGe

main question is how to construct PI’ (and

based on the minimal information AMG as-

sumes about the original problem ?

In the conventional AMG (Ruge and Stuben),

one is motivated by finite difference M–matrices.

In a general finite element setting, however, the

matrices A are seldom M–matrices.

In 1998, by a team from University of Colorado,

Boulder and LLNL, the following assumption was

made to generalize AMG to finite element prob-

lems, called AMGe; namely, that one allows

“access to the individual element matrices”

(on the fine grid).

This assumption can be eliminated (to a certain

extend) but in the present talk we will use it.
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2.2. Main definitions and constructions

By definition, an element is a “list of degrees of
freedom” , e = ...,d~,},{dl 7

and we are given an overlapping partition {e} of

D (the set of degrees of freedom).

Also, each element is

matrix Ae,an ne x ~e
cation we assume to

semi–definite.

associated with an element

matrix, which in our appli-

be symmetric and positive

Then, the global matrix A is assembled from the

individual element matrices Ae in the usual way,

i.e.,

Here, Ve = Vie,i.e., restriction to subset (ec D).
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2.3. Graph based algorithms for coarsening

The variant of AMGe method we will present

is based on a straightforward extension of the

standard finite element method, now in a graph

setting.

Namely, given the following graph,

“element_ node”

which is the incidence sparse matrix “element” z

(rows) contains “node” j (columns),

i.e., it is the rectangular sparse matrix

Element_Node of ones and zeros, of size

(number of elements) x (number of nodes).

( “node” means a number of degrees of freedom

in order to handle systems of PDEs).
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The incidence

“node” z belongs to “element” j,

is given by the transpose of the above rectangular sparse
matrix, i.e.,

Node-Element = (Element_ Node)?

One can consider a number of useful graphs (easily com-
putable)

“element_ element” =.

= “element_node” x “node-element”,

“node_node” = “node-element” x “element-node”,

The first one shows the incidence

“element” z intersects “element” j,

whereas the second one shows the sparsity pattern of the
assembled matrix, namely,

“node” z is connected to “node” j (hence the entry az,j

could be non–zero).
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2.1. Element faces

The notion of “face”
ments) is defined as a

(similar to standard ele-
maximal intersection set,

i.e., consider all intersections

el nq, el # ez.

A face is a maximal intersection set of the above
type, or a maximal intersection set of the type

e n “boundary surfs-ce”.

(if special lists of nodes is given, that provide ad-
ditional information about the domain boundary)

One can then construct the following graphs:

“element-face”, “face_element”, “face_node”,
“face-face”, etc.

For example,

“face_face” = “face-node” x “node_ face”.
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2.2. Element agglomeration

The topological information is used to devise

an algorithm to agglomerate elements – a new

overlapping partition {E} of D where each E =

elUe2 . . . Uep, i.e., to build the new graph

“AE-element” where AE stands for “agglom-

erated element”.

The following algorithm has been proposed in

Jones and V. (1999).

The motivation is to have “quasiuniform” “AE”s.

In particular, this algorithm will restore coarse

rectangular or triangular elements (up to bound-

ary effects).
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Algorithm 2 (Agglomeration of elements)

Given the graphs

“face_face”, “element-face” and “face.element”

and a weight function w(f) = O, f-face, one performs;

1.

2.

3.

find a face f with maximal w(f)>0, then set W(f) =
–1 and add on the list of the c~rrent “AE” the ele-
ments el and e2 such that f = el n e2.

update w(fl)for all fl connected to f (based on the
graph “face-face “), according to the following topo-
logical rule, W( f~) := W(fl) + 1 if fl is connected
to f and once more W(fl) := w(fl) + 1 if fl and f
belong to a same element (here one uses the graph
“face.element”);

if for all faces flof the already agglomerated elements
e (here one uses the graph “element_face”) in the
current “AE*’ W(fl) is less than w(f)where f was the
last eliminated face, the agglomeration procedure for
the current “AE” is terminated. Then, go to step 1
or stop.

16



2.3. Selection of coarse nodes

Assume that the graph “AE-element” has been

constructed (somehow), then one can build

“AE_face” = “AE-element” x “element-face”.

Finally, one can define faces of agglomerated ele-

ments, “AEface”s, based on “AE_face”; namely,

each “AE” has a number of faces of the origi-

nal elements. That is, we have the lists “AE” –

“faces”. Intersecting two different lists, one gets

the faces of the “AE”S in terms of the faces of

the original elements. That is, one may define

the new graphs

“AEface_face”, and “AE-AEface”.



2.4. Vertices – nodes that belong to two (or

more) “AEface”s. For this we need the graph

“node-AEface” = ( “AEface-node” )T,

which can be computed as the transpose of

“AEface-node” = “AEface_face” x “face_node”.

Definition 1

coarse nodes

tices of the

(Coarse nodes) A minima/ set of

N. c N is provided by the ver-
“AE”S, i.e., one forms the graph

‘bode-coarsenode”;

Then one can construct,

“coarseelement-coarsenode” =

“AE-node” x “node_coarsenode”;

“coarseelement. coarseface” = “AE_AEface”;

“coarseface_coarsenode” =

“AEface.node” x “node.coarsenode”;

and hence be able to continue coarsening by recursion.
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2.5. Construction of interpolation mappings

Having chosen a coarse grid NC one can con-

struct interpolation mappings based on “minimal

energy” principle. I.e., given a node d one needs

a set of coarse nodes to interpolate from. This

can be based on the topology already created.

Given the graphs,

“AE-node” = “AE_element” x “element. node”,

and its transpose “node_AE”,

one can build a neighborhood Q(d) = U{E, d c
E} of d. I.e., from the list “node”- “agglomer-

ated element”, one forms the union of all “AE”S

that contain d.

Then assemble the stiffness matrix An(d)from

the element matrices associated with the ele-

ments e that are contained in “AE”S in Q(d).

19



In order to get a compatible interpolation rule

one uses (Jones and V. (1999)):

“A node d is interpolated only from coarse

nodes that belong to A@) = n{q E c Q(d)}”.

Then, one can define coarse element matrices,

as

Here, A~ is the assembled matrix corresponding

to each “AE”, E = e@e2 . . . u ep, and P isre-

stricted to E. Note that for each E, fine–grid

nodes (E E) are interpolated from coarse nodes

from E, hence the restriction of P to each E is

well–defined.

Thus, the entire coarsening procedure can be re-

cursively applied.
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Finally, one

for

generating

from the

may separate the graph algorithms

agglomerated elements

selection of the coarse grids.

One may define the coarse-grid nodes indepen-

dently of the “AE”s.

In that case, however, one has to give up the

property

that the global coarse matrix AC can be assem-

bled from the coarse element matrices.

It is desirable to have Ac = PTAP.
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The idea is to have two sets of matrices,

“true” stiffness matrices,

related variation ally,

and e/ement matrices that are only needed as a

tool to build P. -

The latter can be viewed as “non-conforming”

coarse discretization element matrices. They are

defined as before, i.e., “AE’’-wise,

Akc= (P~)TA~P~;

however, {P~} does not necessarily define a global

prolongation mapping, i.e., it is not, in general,

a compatible set of prolongation mappings.
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3. Examples of coarse elements
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The graph-based agglomeration algorithm is a

partitioning algorithm and provides natural nested

dissection ordering of the matrices.

Typical sparsity patterns are as follows:

o 200 400 600 800 1OQo 1200
nz = 4702
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o 500 tooo 1500 2000 2500 3000
nz = 9368

I .

0 500 1000 1500 2000 2500 3000
nz = 34968
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PCG tests w th approximate LU–factorizat on of

spar-the matrix in the nested dissection ordering;

sity pattern of the preconditioned is determined

by the sparsity pattern

preconditioned;

of A*, i.e.,a ILU(l)–

~Zl ble 1 Iteration counts and convergence factors for AMGe;

unstructured triangular grid, anisotropic Poisson equation; # fine

elements = 6452, # fine dofs = 3 281, # levels = 9

method ILu ~V-cycle –ILU smoother ~ PCG –GS smoothe
L

# iterations 48 30 65

Q II0.75I 0.42 0.57
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~a ble 2 Iteration counts and convergence factors for AMGe;

unstructured triangular grid, anisotropic Poisson equation; # fine

elements = 2435, # fine dofs = 1 256, # levels = 8

method ILU V-cycle –ILU smoother PCG -GS smoothe

# iterations 24 21 48

Q I0.46 I 0.29 0.57

Table 3 Iteration counts and convergence factors for AMGe;

unstructured triangular grid, an isotropic Poisson equation; # fine

elements = 876, # fine dofs = 466, # levels = 7

r

method ILU V-cycle –IL U smoother PCG –GS smoother

# iterations 12 12 36

Q 0.3 0.12 0.46

Table 4 Iteration counts and convergence factors for AMGe;

unstructured triangular grid, anisotropic Poisson equation; # fine

elements = 296, # fine dofs = 169, # levels = 6

method ILU V-cycle –ILU smoother PCG –GS smoothe

# iterations 6 5 22

e 0.05 0.007 0.27
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4. Numerical experiments

“Standard examples”: quasi uniform meshes and
Poisson like problems;

Table 5 Iteration counts and convergence factors for AMGe;
unstructured triangular grid, Poisson equation.

# elements 4016 16016
# dofs 2085 8095

# levels 8 10
II

*“/aerations II 14
I

17,, II I

Q 0.13 0.18
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Table 6 A MGe performance for 2–D elasticity; non–conforming
coarse element matrices used and graph (nodal) coarsening applied;

p=l,~=l.

~-~
d # levels # iterations Q # unknowns # element

16 1 5 17 0.18 578 256
32 1 6 18 0.21 2178 1024
64 1 21 0.26 8450 4096

128 1 : 24 0.30 33282 16384
128 0.125 8 26 0.34 4386 2048
128 0.25 8 23 0.29 8514 4096



Table 7 TyPica/

level #

o

1

2
3
4
5
6
7
8

# elements

4016
866
240
95
43
20
9
3
1

coarsening history; unstructured
triangular grid.

14285
10405

8383
5829
3456
1462
394
64
16

# nodes I matrix size I min matrix siz
I I

2085
917
395
177
84
42
20
8
4

14285
9055
4521
2031
960
432
166
46
16

,
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“Non-standard example” :

–v ● (d+ by)u = 1,

[1

Cos 0where ~ =
sind “

in Q = (O, 1)2,

o, O<z<;, ;<g<l,

(2)

and

e = 0.001.

Here we use as coarse grid all nodes on the faces

of the agglomerated elements plus some addi-

tional interior nodes which make the correspond-

ing Aff block of the matrices better–conditioned.
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This an extreme case of coarsening and can be

viewed as an approximate “nested dissection”

type factorization of the matrix plus standard

(Gauss–Seidel) smoothing.

The coarse matrices are getting denser and the

cost is high, but the resulting method is robust

with respect to highly anisotropic coefficients and

standard quasi uniform fine meshes.

Table 8 Iteration counts and convergence

factors for A MGe; unstructured triangular grid,

anisotropic Poisson equation.

# e/ements II 296187612435164521

I # dofs 169 466 1 256 3281
# levels 6 7 8 9

# iterations 11 13 16 21

I Q II 0.071 0.101 0.17 I 0.26 I
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Table 9 Typical coarsening history; unstructured
triangular grid.

[ level # I # elements I # nodes I matrix size

o
1

2
3
4
5
6
7
8
9

6452
1408
402
146
65
31
15
7
3
1

3281
3023
2072
1475
1165
922
762
631
459
108

22745
25947
46522
59209
76805
92128
128950
191043
171213
11664

Table 10 Typical coarsening history; unstructured
triangular grid.

level #
o

1
2
3
4
5
6
7
8

# elements

2435
502
145
62
28
13
6
3
1

# nodes

1256
1129
805
645
508
390
314
257
75

matrix size

8636
10365
18673
25215
31636
38126
47404
52921
5625
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